Copied to
clipboard

G = C62.221C23order 288 = 25·32

66th non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.221C23, (C2×C12).204D6, C62.62(C2×C4), (C22×C6).83D6, C625C4.4C2, C6.91(D42S3), (C6×C12).250C22, C6.Dic618C2, (C2×C62).60C22, C3214(C42⋊C2), C2.1(C12.D6), C34(C23.16D6), C6.65(S3×C2×C4), (C2×C6).21(C4×S3), C22.6(C4×C3⋊S3), (C4×C3⋊Dic3)⋊20C2, (C2×C3⋊Dic3)⋊10C4, C23.16(C2×C3⋊S3), C22⋊C4.3(C3⋊S3), (C3×C22⋊C4).14S3, C3⋊Dic3.47(C2×C4), (C3×C6).96(C22×C4), (C3×C6).141(C4○D4), (C2×C6).238(C22×S3), (C32×C22⋊C4).6C2, C22.12(C22×C3⋊S3), (C22×C3⋊Dic3).9C2, (C2×C3⋊Dic3).153C22, C2.7(C2×C4×C3⋊S3), (C2×C4).25(C2×C3⋊S3), SmallGroup(288,734)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.221C23
C1C3C32C3×C6C62C2×C3⋊Dic3C22×C3⋊Dic3 — C62.221C23
C32C3×C6 — C62.221C23
C1C22C22⋊C4

Generators and relations for C62.221C23
 G = < a,b,c,d,e | a6=b6=d2=1, c2=b3, e2=a3, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=b3d >

Subgroups: 644 in 228 conjugacy classes, 85 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C42⋊C2, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, C62, C62, C4×Dic3, Dic3⋊C4, C6.D4, C3×C22⋊C4, C22×Dic3, C2×C3⋊Dic3, C2×C3⋊Dic3, C6×C12, C2×C62, C23.16D6, C4×C3⋊Dic3, C6.Dic6, C625C4, C32×C22⋊C4, C22×C3⋊Dic3, C62.221C23
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4○D4, C3⋊S3, C4×S3, C22×S3, C42⋊C2, C2×C3⋊S3, S3×C2×C4, D42S3, C4×C3⋊S3, C22×C3⋊S3, C23.16D6, C2×C4×C3⋊S3, C12.D6, C62.221C23

Smallest permutation representation of C62.221C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 35 58 15 39 61)(2 36 59 16 40 62)(3 31 60 17 41 63)(4 32 55 18 42 64)(5 33 56 13 37 65)(6 34 57 14 38 66)(7 123 27 120 140 24)(8 124 28 115 141 19)(9 125 29 116 142 20)(10 126 30 117 143 21)(11 121 25 118 144 22)(12 122 26 119 139 23)(43 96 51 77 101 71)(44 91 52 78 102 72)(45 92 53 73 97 67)(46 93 54 74 98 68)(47 94 49 75 99 69)(48 95 50 76 100 70)(79 105 135 130 88 111)(80 106 136 131 89 112)(81 107 137 132 90 113)(82 108 138 127 85 114)(83 103 133 128 86 109)(84 104 134 129 87 110)
(1 90 15 107)(2 89 16 106)(3 88 17 105)(4 87 18 104)(5 86 13 103)(6 85 14 108)(7 76 120 48)(8 75 115 47)(9 74 116 46)(10 73 117 45)(11 78 118 44)(12 77 119 43)(19 99 28 94)(20 98 29 93)(21 97 30 92)(22 102 25 91)(23 101 26 96)(24 100 27 95)(31 130 41 79)(32 129 42 84)(33 128 37 83)(34 127 38 82)(35 132 39 81)(36 131 40 80)(49 141 69 124)(50 140 70 123)(51 139 71 122)(52 144 72 121)(53 143 67 126)(54 142 68 125)(55 134 64 110)(56 133 65 109)(57 138 66 114)(58 137 61 113)(59 136 62 112)(60 135 63 111)
(7 120)(8 115)(9 116)(10 117)(11 118)(12 119)(19 28)(20 29)(21 30)(22 25)(23 26)(24 27)(43 77)(44 78)(45 73)(46 74)(47 75)(48 76)(49 69)(50 70)(51 71)(52 72)(53 67)(54 68)(91 102)(92 97)(93 98)(94 99)(95 100)(96 101)(121 144)(122 139)(123 140)(124 141)(125 142)(126 143)
(1 70 4 67)(2 71 5 68)(3 72 6 69)(7 129 10 132)(8 130 11 127)(9 131 12 128)(13 54 16 51)(14 49 17 52)(15 50 18 53)(19 135 22 138)(20 136 23 133)(21 137 24 134)(25 114 28 111)(26 109 29 112)(27 110 30 113)(31 44 34 47)(32 45 35 48)(33 46 36 43)(37 74 40 77)(38 75 41 78)(39 76 42 73)(55 92 58 95)(56 93 59 96)(57 94 60 91)(61 100 64 97)(62 101 65 98)(63 102 66 99)(79 118 82 115)(80 119 83 116)(81 120 84 117)(85 124 88 121)(86 125 89 122)(87 126 90 123)(103 142 106 139)(104 143 107 140)(105 144 108 141)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,58,15,39,61)(2,36,59,16,40,62)(3,31,60,17,41,63)(4,32,55,18,42,64)(5,33,56,13,37,65)(6,34,57,14,38,66)(7,123,27,120,140,24)(8,124,28,115,141,19)(9,125,29,116,142,20)(10,126,30,117,143,21)(11,121,25,118,144,22)(12,122,26,119,139,23)(43,96,51,77,101,71)(44,91,52,78,102,72)(45,92,53,73,97,67)(46,93,54,74,98,68)(47,94,49,75,99,69)(48,95,50,76,100,70)(79,105,135,130,88,111)(80,106,136,131,89,112)(81,107,137,132,90,113)(82,108,138,127,85,114)(83,103,133,128,86,109)(84,104,134,129,87,110), (1,90,15,107)(2,89,16,106)(3,88,17,105)(4,87,18,104)(5,86,13,103)(6,85,14,108)(7,76,120,48)(8,75,115,47)(9,74,116,46)(10,73,117,45)(11,78,118,44)(12,77,119,43)(19,99,28,94)(20,98,29,93)(21,97,30,92)(22,102,25,91)(23,101,26,96)(24,100,27,95)(31,130,41,79)(32,129,42,84)(33,128,37,83)(34,127,38,82)(35,132,39,81)(36,131,40,80)(49,141,69,124)(50,140,70,123)(51,139,71,122)(52,144,72,121)(53,143,67,126)(54,142,68,125)(55,134,64,110)(56,133,65,109)(57,138,66,114)(58,137,61,113)(59,136,62,112)(60,135,63,111), (7,120)(8,115)(9,116)(10,117)(11,118)(12,119)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27)(43,77)(44,78)(45,73)(46,74)(47,75)(48,76)(49,69)(50,70)(51,71)(52,72)(53,67)(54,68)(91,102)(92,97)(93,98)(94,99)(95,100)(96,101)(121,144)(122,139)(123,140)(124,141)(125,142)(126,143), (1,70,4,67)(2,71,5,68)(3,72,6,69)(7,129,10,132)(8,130,11,127)(9,131,12,128)(13,54,16,51)(14,49,17,52)(15,50,18,53)(19,135,22,138)(20,136,23,133)(21,137,24,134)(25,114,28,111)(26,109,29,112)(27,110,30,113)(31,44,34,47)(32,45,35,48)(33,46,36,43)(37,74,40,77)(38,75,41,78)(39,76,42,73)(55,92,58,95)(56,93,59,96)(57,94,60,91)(61,100,64,97)(62,101,65,98)(63,102,66,99)(79,118,82,115)(80,119,83,116)(81,120,84,117)(85,124,88,121)(86,125,89,122)(87,126,90,123)(103,142,106,139)(104,143,107,140)(105,144,108,141)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,58,15,39,61)(2,36,59,16,40,62)(3,31,60,17,41,63)(4,32,55,18,42,64)(5,33,56,13,37,65)(6,34,57,14,38,66)(7,123,27,120,140,24)(8,124,28,115,141,19)(9,125,29,116,142,20)(10,126,30,117,143,21)(11,121,25,118,144,22)(12,122,26,119,139,23)(43,96,51,77,101,71)(44,91,52,78,102,72)(45,92,53,73,97,67)(46,93,54,74,98,68)(47,94,49,75,99,69)(48,95,50,76,100,70)(79,105,135,130,88,111)(80,106,136,131,89,112)(81,107,137,132,90,113)(82,108,138,127,85,114)(83,103,133,128,86,109)(84,104,134,129,87,110), (1,90,15,107)(2,89,16,106)(3,88,17,105)(4,87,18,104)(5,86,13,103)(6,85,14,108)(7,76,120,48)(8,75,115,47)(9,74,116,46)(10,73,117,45)(11,78,118,44)(12,77,119,43)(19,99,28,94)(20,98,29,93)(21,97,30,92)(22,102,25,91)(23,101,26,96)(24,100,27,95)(31,130,41,79)(32,129,42,84)(33,128,37,83)(34,127,38,82)(35,132,39,81)(36,131,40,80)(49,141,69,124)(50,140,70,123)(51,139,71,122)(52,144,72,121)(53,143,67,126)(54,142,68,125)(55,134,64,110)(56,133,65,109)(57,138,66,114)(58,137,61,113)(59,136,62,112)(60,135,63,111), (7,120)(8,115)(9,116)(10,117)(11,118)(12,119)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27)(43,77)(44,78)(45,73)(46,74)(47,75)(48,76)(49,69)(50,70)(51,71)(52,72)(53,67)(54,68)(91,102)(92,97)(93,98)(94,99)(95,100)(96,101)(121,144)(122,139)(123,140)(124,141)(125,142)(126,143), (1,70,4,67)(2,71,5,68)(3,72,6,69)(7,129,10,132)(8,130,11,127)(9,131,12,128)(13,54,16,51)(14,49,17,52)(15,50,18,53)(19,135,22,138)(20,136,23,133)(21,137,24,134)(25,114,28,111)(26,109,29,112)(27,110,30,113)(31,44,34,47)(32,45,35,48)(33,46,36,43)(37,74,40,77)(38,75,41,78)(39,76,42,73)(55,92,58,95)(56,93,59,96)(57,94,60,91)(61,100,64,97)(62,101,65,98)(63,102,66,99)(79,118,82,115)(80,119,83,116)(81,120,84,117)(85,124,88,121)(86,125,89,122)(87,126,90,123)(103,142,106,139)(104,143,107,140)(105,144,108,141) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,35,58,15,39,61),(2,36,59,16,40,62),(3,31,60,17,41,63),(4,32,55,18,42,64),(5,33,56,13,37,65),(6,34,57,14,38,66),(7,123,27,120,140,24),(8,124,28,115,141,19),(9,125,29,116,142,20),(10,126,30,117,143,21),(11,121,25,118,144,22),(12,122,26,119,139,23),(43,96,51,77,101,71),(44,91,52,78,102,72),(45,92,53,73,97,67),(46,93,54,74,98,68),(47,94,49,75,99,69),(48,95,50,76,100,70),(79,105,135,130,88,111),(80,106,136,131,89,112),(81,107,137,132,90,113),(82,108,138,127,85,114),(83,103,133,128,86,109),(84,104,134,129,87,110)], [(1,90,15,107),(2,89,16,106),(3,88,17,105),(4,87,18,104),(5,86,13,103),(6,85,14,108),(7,76,120,48),(8,75,115,47),(9,74,116,46),(10,73,117,45),(11,78,118,44),(12,77,119,43),(19,99,28,94),(20,98,29,93),(21,97,30,92),(22,102,25,91),(23,101,26,96),(24,100,27,95),(31,130,41,79),(32,129,42,84),(33,128,37,83),(34,127,38,82),(35,132,39,81),(36,131,40,80),(49,141,69,124),(50,140,70,123),(51,139,71,122),(52,144,72,121),(53,143,67,126),(54,142,68,125),(55,134,64,110),(56,133,65,109),(57,138,66,114),(58,137,61,113),(59,136,62,112),(60,135,63,111)], [(7,120),(8,115),(9,116),(10,117),(11,118),(12,119),(19,28),(20,29),(21,30),(22,25),(23,26),(24,27),(43,77),(44,78),(45,73),(46,74),(47,75),(48,76),(49,69),(50,70),(51,71),(52,72),(53,67),(54,68),(91,102),(92,97),(93,98),(94,99),(95,100),(96,101),(121,144),(122,139),(123,140),(124,141),(125,142),(126,143)], [(1,70,4,67),(2,71,5,68),(3,72,6,69),(7,129,10,132),(8,130,11,127),(9,131,12,128),(13,54,16,51),(14,49,17,52),(15,50,18,53),(19,135,22,138),(20,136,23,133),(21,137,24,134),(25,114,28,111),(26,109,29,112),(27,110,30,113),(31,44,34,47),(32,45,35,48),(33,46,36,43),(37,74,40,77),(38,75,41,78),(39,76,42,73),(55,92,58,95),(56,93,59,96),(57,94,60,91),(61,100,64,97),(62,101,65,98),(63,102,66,99),(79,118,82,115),(80,119,83,116),(81,120,84,117),(85,124,88,121),(86,125,89,122),(87,126,90,123),(103,142,106,139),(104,143,107,140),(105,144,108,141)]])

60 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E4F4G4H4I···4N6A···6L6M···6T12A···12P
order1222223333444444444···46···66···612···12
size11112222222222999918···182···24···44···4

60 irreducible representations

dim1111111222224
type+++++++++-
imageC1C2C2C2C2C2C4S3D6D6C4○D4C4×S3D42S3
kernelC62.221C23C4×C3⋊Dic3C6.Dic6C625C4C32×C22⋊C4C22×C3⋊Dic3C2×C3⋊Dic3C3×C22⋊C4C2×C12C22×C6C3×C6C2×C6C6
# reps12211184844168

Matrix representation of C62.221C23 in GL8(𝔽13)

120000000
012000000
000120000
001120000
00001000
00000100
00000010
00000001
,
120000000
012000000
00100000
00010000
000012000
000001200
000000012
000000112
,
80000000
08000000
00100000
001120000
00008000
00000800
00000073
000000106
,
10000000
012000000
00100000
00010000
00001000
000081200
00000010
00000001
,
01000000
120000000
00100000
00010000
000081100
000012500
000000120
000000012

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12],[8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6],[1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,8,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,8,12,0,0,0,0,0,0,11,5,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;

C62.221C23 in GAP, Magma, Sage, TeX

C_6^2._{221}C_2^3
% in TeX

G:=Group("C6^2.221C2^3");
// GroupNames label

G:=SmallGroup(288,734);
// by ID

G=gap.SmallGroup(288,734);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,219,58,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=d^2=1,c^2=b^3,e^2=a^3,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
×
𝔽